首页> 外文OA文献 >Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
【2h】

Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons

机译:神经动力学作为采样:尖峰神经元的递归网络中的随机计算模型。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.
机译:大脑中的尖峰神经元网络中的计算组织仍然很大程度上未知,特别是考虑到其发射活动的内在随机性以及实验观察到的大脑中神经系统的变化。原则上,存在用于随机计算的强大计算框架,即通过采样进行概率推断,它可以解释神经科学和认知科学中的大量宏观实验数据。但是,事实证明,在这些用于随机计算的抽象模型与尖峰神经元网络动力学的更详细模型之间创建链接非常困难。在这里,我们创建了这样的链接,并表明在某些条件下,尖峰神经元网络的随机激发活动可以通过马尔可夫链蒙特卡洛(MCMC)采样解释为概率推断。由于在分布式系统中进行MCMC采样的常用方法(例如Gibbs采样)与尖峰神经元的动力学不一致,因此,我们引入了一种基于不可逆马尔可夫链的方法,该方法能够通过神经网络反映尖峰神经活动的固有时间过程。适当选择随机变量。我们提出了一个神经网络模型,并通过严格的理论分析表明,对于离散时间和连续时间,其神经活动均实现了给定分布的MCMC采样。这为缩小皮层计算的抽象功能模型与尖峰神经元网络的更详细模型之间的差距提供了一个步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号